Fitted diffeomorphisms of non-simply connected manifolds
نویسندگان
چکیده
منابع مشابه
On Non-formal Simply Connected Manifolds
We construct examples of non-formal simply connected and compact oriented manifolds of any dimension bigger or equal to 7.
متن کاملDonaldson invariants for non-simply connected manifolds
We study Coulomb branch (“u-plane”) integrals for N = 2 supersymmetric SU(2), SO(3) Yang-Mills theory on 4-manifolds X of b1(X) > 0, b + 2 (X) = 1. Using wall-crossing arguments we derive expressions for the Donaldson invariants for manifolds with b1(X) > 0, b+2 (X) > 0. Explicit expressions for X = CP 1 × Fg, where Fg is a Riemann surface of genus g are obtained using Kronecker’s double series...
متن کاملOn Simply-connected 4-manifolds
This paper concerns (but does not succeed in performing) the diffeomorphism classification of closed, oriented, differential, simply-connected 4-manifolds. It arises out of the observation (due to Pontrjagin and Milnor [2]) that if two such manifolds Mx and M2 have isomorphic quadratic forms of intersection numbers on #2(Jft-), then there is a map / : M1-^-Mi which is a homotopy equivalence and...
متن کاملSymmetry Groups of Non-simply Connected Four-manifolds
LetM be a closed, connected, orientable topological four-manifold with H1(M) nontrivial and free abelian, b2(M) 6= 0, 2, and χ(M) 6= 0. Then the only finite groups which admit homologically trivial, locally linear, effective actions on M are cyclic. The proof uses equivariant cohomology, localization, and a careful study of the first cohomology groups of the (potential) singular set.
متن کاملThe Yamabe invariant for non-simply connected manifolds
The Yamabe invariant is an invariant of a closed smooth manifold defined using conformal geometry and the scalar curvature. Recently, Petean showed that the Yamabe invariant is non-negative for all closed simply connected manifolds of dimension ≥ 5. We extend this to show that Yamabe invariant is non-negative for all closed manifolds of dimension ≥ 5 with fundamental group of odd order having a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 1980
ISSN: 0040-9383
DOI: 10.1016/0040-9383(80)90022-1